jueves, 23 de diciembre de 2010

Niños aborígenes de Australia son capaces de contar sin números

Según un nuevo estudio sobre niños aborígenes australianos realizado por el University College de Londres y la Universidad de Melbourne, conocer las palabras para designar los números no es necesario para poder contar.
foto: egyptsearch.com
En el estudio se examinó a ciertas poblaciones indígenas australianas que tienen vocabularios muy limitados para los números, trabajando con niños de edades comprendidas entre los cuatro y los siete años, de dos comunidades indígenas con difierente idioma. En ambas lenguas, existen palabras para uno, dos, algunos y muchos. Y tampoco parece haber ningún gesto para los números.
En el estudio, se comprobó que esa carencia de palabras o gestos para los números en los niños examinados no les impide realizar una serie de tareas relacionadas con ellos.
Los resultados de este nuevo estudio sugieren, por tanto, que los seres humanos poseemos un mecanismo innato para contar, que puede desarrollarse de forma diferente en los niños con discalculia, y que la falta de un vocabulario para los números no debe impedirnos realizar tareas numéricas que no requieran de palabras para designar los números. Este sistema innato para contar nos permite reconocer y representar el número de objetos de un conjunto.
* * * 
Adaptado y publicado por Mauritz.
Fuente: Agencias ; www.novaciencia.com

domingo, 5 de diciembre de 2010

Fue superado el problema de SIDON de hace casi 80 años

El matemático húngaro Simon Sidon planteó, en 1932, al entonces estudiante Paul Erdös un problema fácil de formular, pero muy difícil de solucionar. Tanto, que no ha sido vencido definitivamente hasta ahora; dos matemáticos españoles, junto a un húngaro, han dado con la respuesta. El problema original de Sidon era el siguiente: ¿Cuál es el mayor tamaño de un conjunto de números, todos ellos menores que una cantidad dada, en el que todas las sumas de dos elementos del conjunto dan resultados distintos? Un conjunto de números que cumpla esa condición se llama conjunto de Sidon, por ejemplo 1, 2, 5, 10, 16, 23, 33, 35. No lo es, sin embargo, 1, 3, 7, 10, 17, 23, 28, 35, porque aparecen sumas repetidas (1+23=7+17).
¿Cuál es el mayor tamaño que puede tener un conjunto de Sidon en {1, . . , n}? ¿Y si permitimos que cada suma pueda aparecer hasta g veces? (conjuntos g-Sidon)
Mientras el problema para el caso g=1, donde todas las sumas son distintas, no tardó mucho en resolverse por el propio Erdös, determinar el tamaño de estos conjuntos para valores mayores de g, ha sido un misterio desde entonces y ha atraído la atención de muchos matemáticos, entre otros de Paul Erdos y de Ben Green.